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Abstract

Transition from rest and steady convective states to oscillatory flows is investigated in a shallow porous enclosure

subject to vertical thermal and solutal gradients. Various combinations of Dirichlet and Neumann thermal and solutal

boundary conditions is considered. The unsteady form of Hazen–Darcy law with the Boussinesq approximation is used

to model the convective flow through the porous medium. The governing and perturbation equations are solved nu-

merically using finite element method. The threshold of transition, which characterizes the transition from steady to

oscillatory finite amplitude flows, and the threshold of overstability (Hopf bifurcation), which characterizes the tran-

sition from the rest to oscillatory state, are obtained for a wide range of the governing parameters. The porosity and the

acceleration parameter of the porous medium have a strong effect on the thresholds of transition and overstability. An

increase in the acceleration parameter and the normalized porosity delays the onset of overstability and the transition to

oscillatory finite amplitude flows. For Neumann boundary conditions type, the wavenumber is zero at the onset of

overstabilities and finite at the transition threshold.
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1. Introduction

Combined heat and mass transfer by natural convection in porous materials is a field of great interest for many

researchers and engineers. Its applications include many diversified fields such as transport of moisture in fibrous in-

sulation and contaminants in saturated soil. Underground disposal of nuclear or non-nuclear wastes, food processing,

metallurgy and chemistry are also some disciplines where combined heat and solute transfer in multi-component fluids

are involved.

In double-diffusive convection, when the thermal and solutal buoyancy forces are comparable and opposing each

other, a rich variety of phenomena can occur (here, the word solutal refers to solute or mass transfer effects). These

phenomena include the possible existence of multiple steady and unsteady state solutions for the same set of governing

parameters, subcritical and oscillatory flows, traveling waves and asymmetric flow patterns (see, for example, Nield [1],

Taunton et al. [2], Mamou et al. [3] and Mamou and Vasseur [4]). These convective phenomena are caused by the fact

that the thermal and solutal diffusivities are different from each other, which leads to different time scales for the heat

and solute transfer. Therefore, the heat and solute transfers can get out of phase and cause the different convective

phenomena mentioned above. The difference in time scales can also occur when the solid material of the porous medium
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is impermeable. The heat transfer is transferred through both the fluid and the solid regions. However, the solute is

transported only through the fluid region by diffusion and convection. Thus, the porosity of the porous medium can

have a strong effect on the transient flow behavior within the porous medium, even when the thermal and solutal

diffusivities are equal.

Nomenclature

A aspect ratio, W 0=H 0

a integer, equals 0 for Dirichlet boundary conditions and 1 for Neumann

AC critical wavelength

Da Darcy number, K=H 02

g acceleration due to gravity

H 0 thickness of the porous layer

j0 constant solute flux

k wavenumber

N Buoyancy ratio, RS=ðRTLeÞ
Nu Nusselt number

Pr Prandtl number

q0 constant heat flux

RT thermal Rayleigh number, gbTDT �KH 0=ðaTmÞ
RS solutal Rayleigh number, gbSDS�KH 0=ðaSmÞ
Rsub
TC subcritical critical Rayleigh number

Rover
TC overstable critical Rayleigh number

Rsup
TC supercritical Rayleigh number

Rtran
TC critical Rayleigh number for transition

Sh Sherwood number

S dimensionless solute concentration, (S0 � S0
0Þ=DS�

DS� characteristic solute concentration difference

T dimensionless temperature, (T 0 � T 0
UÞ=DT �

DT � characteristic temperature difference

t dimensionless time, t0a=ðrH 02Þ
W 0 length of the porous layer

x, y dimensionless coordinates system, ðx0=H 0; y0=H 0Þ

Greek symbols

a diffusivity coefficient

b expansion coefficient

� porosity of the porous medium

e normalized porosity of the porous medium

j thermal conductivity of the saturated porous medium

m kinematic viscosity of fluid

n acceleration parameter of the porous medium, Da=ðr�PrÞ
q density of fluid

ðqcÞf heat capacity of fluid

ðqcÞs heat capacity of the saturated porous medium

r heat capacity ratio, r ¼ ðqcÞs=ðqcÞf
W stream function

Subscripts

0 refers to reference state

L refers to lower boundary

m refers to average value

T refers to thermal

S refers to solutal

U refers to upper boundary
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Double-diffusive convection instabilities in a horizontal porous layer is studied primarily by Nield [1]. The critical

Rayleigh numbers for the onset of stationary and overstable convection are obtained for different thermal and solutal

boundary conditions using a linear stability analysis. The analysis is extended by Taunton et al. [2]. The conditions for

which salt fingers develop are determined. Rudraiah et al. [5] examine a porous layer with isothermal and isosolutal

boundaries using a weakly non-linear stability analysis. The effect of the Prandtl number, ratio of thermal and solute

diffusivities and permeability parameter on the finite amplitude flow are studied for opposing buoyancy forces. By

deriving an asymptotic steady solution, the threshold for subcritical convection is obtained as function of the ratio of

diffusivities. Brand and Steinberg [6] investigate finite amplitude convection near the threshold for both stationary and

overstable convection. The temporal evolution of the heat and mass transfer rates is predicted.

Numerical and experimental investigations on double-diffusive convection are conducted by Murray and Chen [7] in

a horizontal porous layer. The authors find that when solute is stabilizing, the onset of convection is marked by an

abrupt increase in the heat flux at a critical temperature difference value. Furthermore, when the temperature difference

was reduced below the critical value, the heat flux curve establishes a hysteresis loop, which indicates clearly the ex-

istence of subcritical flows. Double-diffusive fingering convection in a horizontal porous layer is considered by Chen

and Chen [8]. The boundaries that separate regions of different types of convective modes are identified in terms of the

thermal and solutal Rayleigh numbers.

Mamou et al. [3] consider double-diffusive convection in an inclined porous layer subjected to vertical fluxes of heat

and solute. For the horizontal layer, their analytical and numerical results show mutual agreement and demonstrates

that subcritical steady flows are possible. Studying the same problem within a horizontal porous enclosures, Mamou

and Vasseur [4] considers different boundary conditions for temperature and solute concentration. Different convective

states are found to coexist below the threshold of stationary convection. General expressions for the thresholds of

subcritical, overstable and stationary convective flows are obtained as functions of the governing parameters. Amahmid

et al. [9] consider double-diffusive convection in horizontal sparsely packed porous systems subject to vertical fluxes of

heat and solute. The threshold for the onset of subcritical and stationary flows are determined as functions of the Darcy

number. Mahidjiba et al. [10] examine the effect of mixed thermal and solutal boundary conditions on the thresholds of

overstabilities and stationary convection. They demonstrate that when the thermal and solutal effects are opposing each

other, the flow patterns become different from the classical B�eenard convective flow patterns. Considering the case of

Mamou and Vasseur [4], Kalla et al. [11] study the effect of lateral heating on bifurcation phenomena. The authors find

that lateral heating acts as an imperfection brought to the bifurcation curves. Multiple steady-state solutions with

different heat and mass transfer rates are found to coexist.

The present study describes a thorough investigation of the stability analysis of convective flows within horizontal

porous enclosures subject to vertical thermal and solutal gradients. This study is an extension to the previous work

conducted by Mamou and Vasseur [4] and Mahidjiba et al. [10] by considering the effect of the acceleration (or inertia)

parameter and the normalized porosity of the porous medium on the onset of overstabilities and transition (transition

from finite amplitude steady flow to oscillatory flow). The threshold of transition is determined by performing a linear

stability analysis of the perturbed steady convective state. For comparison, a finite element solution of the full gov-

erning equations is obtained and the effects of the governing parameters on the flow behavior is studied. New ex-

pressions for the thresholds of stationary convection are obtained for mixed thermal and solutal boundary conditions.

The rich variety phenomena existing in opposing double-diffusive convection and the lack of results on transition

phenomenon, which is regarded as the early stage of turbulence, have motivated the present study.

2. Mathematical formulation

The present investigation is on double-diffusive convection instability in horizontal porous enclosure of thickness H 0

and length W 0 subject to vertical gradients of temperature and solute. The vertical gradients are established by ma-

intaining the two horizontal boundaries at constant temperatures and concentrations (Dirichlet boundary conditions

type) or by imposing constant uniform fluxes of heat and solute to the horizontal boundaries (Neumann boundary

conditions type). When the thermal and solutal boundary conditions are of the same type (Dirichlet or Neumann), they

are termed as similar boundary conditions, however, when considering Dirichlet thermal and Neumann solutal

boundary conditions or vice versa, they are termed as mixed boundary conditions. The vertical walls of the enclosure

are kept adiabatic and impermeable.

Adopting Hazen–Darcy law and assuming a Boussinesq incompressible flow, the dimensionless governing equations

are given by

n
oðr2WÞ

ot
þr2W ¼ � RT

oT
ox

�
þ RS

Le
oS
ox

�
; ð1Þ
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oT
ot

� JðW; T Þ ¼ r2T ; ð2Þ

e
oS
ot

� JðW; SÞ ¼ 1

Le
r2S; ð3Þ

where W, T and S are the dimensionless stream function, temperature and concentration, respectively. The Jacobian J is

defined as Jðf;gÞ ¼ ðof=oxÞðog=oyÞ � ðof=oyÞðog=ðoxÞ.
The governing equations were non-dimensionalized using the following variables:

x ¼ x0

H 0 ; y ¼ y0

H 0 ; t ¼ t0aT

rH 02 ; W ¼ W0

aT

; T ¼ ðT 0 � T 0
0Þ

DT � ; S ¼ ðS0 � S0
0Þ

DS� : ð4Þ

Other definitions are as follows:

T 0
0 ¼ aTT 0

ð0;0Þ þ ð1� aTÞ
T 0
L þ T 0

U

2
; DT � ¼ aT

q0H 0

j
þ ð1� aTÞðT 0

L � T 0
UÞ;

S0
0 ¼ aSS0

ð0;0Þ þ ð1� aSÞ
S0
L þ S0

U

2
; DS� ¼ aS

j0H 0

aS

þ ð1� aSÞðS0
L � S0

UÞ;

9>>=
>>;

ð5Þ

where the subscript ð0; 0Þ refers to the origin of the coordinate system, which is at the center of the enclosure with x-axis
horizontal and y-axis opposing the gravity). The parameters ðaT; aSÞ ¼ ð0; 0Þ for Dirichlet boundary conditions and

ðaT; aSÞ ¼ ð1; 1Þ for Neumann boundary conditions. For mixed boundary conditions ðaT; aSÞ ¼ ð1; 0Þ or ð0; 1Þ.
The dimensionless boundary conditions are:

x ¼ 	A
2
; W ¼ 0;

oT
ox

¼ 0; y ¼ 	 1

2
; W ¼ 0; a

ou
oy

	 ð1� aÞu ¼ � a þ 1

2
; ð6Þ

where a stands for aT and aS, and u for T and S.
The dimensionless governing parameters are the thermal Darcy–Rayleigh number, RT, the solutal Rayleigh number,

RS, the Lewis number, Le, the enclosure aspect ratio, A, and the normalized porosity, e. They are defined as follows:

RT ¼ gbTDT �KH 0

aTm
; RS ¼

gbSDS�KH 0

aSm
; Le ¼ aT

aS

; e ¼ �

r
; n ¼ Da

�rPr
; A ¼ W 0

H 0 ; ð7Þ

where Da ¼ ðK=W 02Þ is the Darcy number.

The local heat and mass transfer rates are given in terms of the local Nusselt and Sherwood numbers:

Nu ¼ aT

Tðx;�1=2Þ � Tðx;1=2Þ
þ ð1� aTÞ

oT
oy y¼	1=2

��� ;

Sh ¼ aS

Sðx;�1=2Þ � Sðx;1=2Þ
þ ð1� aSÞ

oS
oy y¼	1=2

��� ;

9>>=
>>;

ð8Þ

and the overall Nusselt and Sherwood number along the horizontal walls can be obtained from:

Num ¼ 1

A

Z A=2

�A=2
Nudx and Shm ¼ 1

A

Z A=2

�A=2
Shdx: ð9Þ

3. Numerical solution

The full governing equations (1)–(3), with the boundary conditions, (6), are solved using a finite element method.

The flow domain is discretized into Lagrange cubic elements, each with nine nodes. The Galerkin weak formulation is

obtained first, and then the Bubnov–Galerkin procedure is used to discretize the governing equations using an implicit

scheme. Global matrix systems of linear equations are obtained and solved iteratively. Further details regarding the

finite element method and the validation of the numerical simulation can be found in Mamou et al. [12,13].

4. Linear stability analysis

The stability of the basic solution is studied in this section. First, the convective solution is decomposed as follows:

ðW; T ; SÞðt;x;yÞ ¼ ðWb; Tb; SbÞðx;yÞ þ ðw; h;/Þðt;x;yÞ; ð10Þ
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where Wb, Tb and Sb is the basic solution that represents the pure diffusive state (Wb ¼ 0, Tb ¼ Sb ¼ �y) or the steady-
state convective solution. The variables w, h and / describe the perturbation profiles imposed on the basic solution. The

boundary conditions for the perturbation are:

x ¼ 	A
2
; w ¼ 0;

ou
ox

¼ 0; y ¼ 	 1

2
; w ¼ 0; a

ou
oy

þ ð1� aÞu ¼ 0; ð11Þ

where a stands for aT and aS, and u for h and /.
Assuming separable variables, the perturbations profiles are given by

wðx; y; tÞ ¼ eptþikxF ðyÞ; hðx; y; tÞ ¼ eptþikxGðyÞ; /ðx; y; tÞ ¼ eptþikxHðyÞ; ð12Þ

where k ¼ np=A is the wavenumber and n is the number of cells. For a confined enclosure, n ¼ 1; 2; 3; . . .; for an infinite

layer, n ¼ 2 with a critical wavelength A ¼ AC.

Upon substituting Eq. (10) into the governing equations (1)–(3) and neglecting the second-order terms, the linearized

governing equations are:

ðnp þ 1Þ d2F
dy2

� k2F
� �

¼ �ik RTG þ RS

Le
H

� �
;

pG � oWb

ox
dG
dy

þ ik
oWb

oy
G � ikF

oTb

oy
þ dF

dy
oTb

ox
¼ d2G

dy2
� k2G;

epH � oWb

ox
dH
dy

þ ik
oWb

oy
H � ikF

oSb

oy
þ dF

dy
oSb

ox
¼ 1

Le
d2H
dy2

� k2H
� �

:

9>>>>>>>=
>>>>>>>;

ð13Þ

The integral Galerkin technique is used to obtain a weak formulation of Eq. (13). Using the finite element method, the

discretized linear equations, after assembling into global matrix system, are obtained as follows:

½Kw� �RT½Bw� �RS

Le
½Bw�

½Bh� ½Kh� 0

½B/� 0
1

Le
½K/�

2
66664

3
77775

F

G
H

8<
:

9=
; ¼ p

�n½Mw� 0 0
0 �½Mh� 0

0 0 �e½M/�

2
4

3
5 F

G
H

8<
:

9=
;; ð14Þ

where ½Bw�, ½Bh�, ½B/�, ½Mw�, ½Mh�, ½M/�, ½Kh�, ½K/� and ½Kw� are square matrices of dimension m � m, where m ¼ 2Ney þ 1

(Ney is the number of element in y-direction) is the node number within the domain X ¼ fy 2 ½�1=2; 1=2�g. The vectors
F, G and H are unknown eigenvectors of dimension m. The corresponding elementary matrices are obtained as follows:

½Bw�e ¼
R

Dye
ikLjLi dy;

½Bh�e ¼
Z

Dye

oTb

ox
dLj

dy
� ik

oTb

oy
Lj

� �
Li dy;

½B/�e ¼
Z

Dye

oSb

ox
dLj

dy
� ik

oSb

oy
Lj

� �
Li dy;

½Kw�e ¼
Z

Dye

dLj

dy
dLi

dy
þ k2LjLi

� �
dy;

½Kh�e ¼
Z

Dye

dLj

dy
dLi

dy
þ k2LjLi þ ik

owb

oy
LjLi �

owb

ox
dLj

dy
Li

� �
dy;

½K/�e ¼
Z

Dye

dLj

dy
dLi

dy
þ k2LjLi þ ikLe

owb

oy
LjLi � Le

owb

ox
dLj

dy
Li

� �
dy;

½Mw�e ¼
Z

Dye

dLj

dy
dLi

dy
þ k2LjLi

� �
dy;

½Mh�e ¼ ½M/�e ¼
Z

Dye

LjLi dy;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð15Þ

where LiðyÞ is a one-dimensional Lagrange interpolation functions.

4.1. Stability analysis of the diffusive state

The stability of the rest state (W0 ¼ 0, Tb ¼ Sb ¼ �y) is now considered.
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4.1.1. Onset of stationary convection

For stationary convection, p ¼ 0, the linear global system, Eq. (14), can be arranged to yield the following eigenvalue

problem:

½E � kI�fFg ¼ 0 with ½E� ¼ ½Kw��1½Bw�½½Kh��1½Bh� þ NLe½K/��1½B/�� and k ¼ 1

RT

: ð16Þ

Eq. (16) has a non-trivial solution, ðfFg 6¼ 0Þ, if and only if the determinant of ½½E� � k½I �� is equal to zero, where ½I � is
the identity matrix. Solving j½E� � k½I �j ¼ 0, we obtain m eigenvalues that are classified as k1 6 k2 6 � � � 6 km�1 6 km,

where k1 is the minimum eigenvalue and km the maximum eigenvalue. The corresponding eigenfunctions are given by

fFgi. The eigenvalues are computed using subroutines from the IMSL library.

In general, the maximum eigenvalue, km, is positive and represents the lowest critical thermal Rayleigh number

above which the stationary convection is possible. The minimum eigenvalue, k1, is usually zero or negative and rep-

resents the highest critical thermal Rayleigh number below which convective flow is possible. This situation corresponds

to RT < 0, i.e. DT � < 0.

The stream function field at the onset of convection is given by

	fFg1 when DT � < 0; or 	 fFgm when DT � > 0: ð17Þ

The temperature and concentration fields are obtained from:

fGgi ¼ ½Kh��1½Bh�fFgi; fHgi ¼ Le½K/��1½B/�fFgi: ð18Þ

4.1.2. Discussion

Typical values of the supecritical Rayleigh number are presented in Table 1 for different boundary conditions and

grid sizes. The results are obtained with N ¼ �1 and Le ¼ 2. Since the Lewis number is specified here, the minimum

eigenvalue (as discussed earlier) corresponds to the maximum Rayleigh number below which convection is possible (i.e.

DT � < 0). The maximum eigenvalue corresponds to the minimum Rayleigh number above which convection is possible

(i.e. DT � > 0). For similar boundary conditions (aT ¼ aS), the maximum critical value is infinity such that, for Le ¼ 2 in

the absence of overstability, the pure diffusive state is unconditionally stable. This situation corresponds to DT � > 0

(heating from below). However, the minimum value ()39.479 for aT ¼ aS ¼ 0, or )22.946 for aT ¼ aS ¼ 1) corresponds

to the critical Rayleigh number when heating from the top. For this situation, the heat is the stabilizing agent and the

solute is the destabilizing agent. Similar results are obtained for ðaT; aSÞ ¼ ð0; 1Þ. However, for ðaT; aSÞ ¼ ð1; 0Þ, heating
from the bottom or from the top, the threshold for stationary convection is finite. For aT ¼ aS ¼ 0, the critical value

agrees well with the known classical value for pure thermal convection, 4p2.

4.1.3. Onset of overstabilities

Overstabilities set in at a threshold RT ¼ Rover
TC beyond which the perturbations grow in an oscillatory manner. The

perturbation growth rate parameter (p ¼ pr þ ipi) is a pure complex number. At the onset of overstabilities, pr ¼ 0 and

pi 6¼ 0. The eigenvalue system in Eq. (14) is solved using the subroutine from the IMSL library. For a given set of

governing parameters, RS, Le, A, e, n, aT and aS, the eigenvalues, p, and eigenfunctions, F, G and H are computed for

different thermal Rayleigh numbers, RT, (for finite aspect ratio enclosure, A) and different wavelengths (for an infinite

layer). For a given aspect ratio or wavelength, the threshold at the onset of overstabilities is obtained by observing when

the real part changes from a negative to positive value in only one eigenvalue. If the imaginary part of the eigenvalue is

non-zero, then the instability is oscillatory. For an infinite layer, the minimum (critical) Rayleigh number is obtained for

different wavelengths. The minimum Rayleigh number for all wavelengths represents the threshold of overstabilities,

Table 1

Supercritical Rayleigh number, Rsup
TC (minimum and maximum values), and grid size effect for the onset of stationary convection within

a square enclosure with Le ¼ 2 and N ¼ �1 and different thermal and solutal boundary conditions

Ney

ðaT; aSÞ 4 8 12 16

ð0; 0Þ )39.518, 1 )39.481, 1 )39.479, 1 )39.479, 1
ð1; 1Þ )22.975, 1 )22.948, 1 )22.946, 1 )22.946, 1
ð0; 1Þ )16.060, 1 )16.033, 1 )16.032, 1 )16.031, 1
ð1; 0Þ 325.718, )70.449 308.025, )69.695 307.103, )69.650 306.948, )69.642
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and the corresponding aspect ratio is the critical wavelength. At RT ¼ Rover
TC , two complex conjugate eigenvalues exist.

The flow patterns of these two solutions are similar or mirror images of each other.

4.1.4. Discussion

For validation, of the present numerical technique, a square enclosure subject to Dirichlet boundary conditions

(aT ¼ aS ¼ 0) is considered. For this situation, Nield [1] obtained an analytical exact solution for the threshold of

overstability. Results obtained for different grid sizes with N ¼ �1, n ¼ 0, A ¼ 1 and aT ¼ aS ¼ 0 are given in Table 2.

The results are presented in terms of the threshold for the onset of overstabilities, Rover
TC , and oscillation frequency, fr.

When the number of grid points increases, the results converge to those obtained by Nield [1]. An efficient way to

determine the critical point without excessive computations is to interpolate the critical value between negative p�
r and

positive pþ
r values of pr. The variation of pr with RT is nearly linear, and thus a first-order interpolation is sufficient

without loss of accuracy. Results with high precision are obtained by reducing the gap between p�
r and pþ

r (i.e.

jpþ
r þ p�

r j ! 0).

With similar thermal and solutal boundary conditions (aT ¼ aS), the threshold of overstabilities is determined by

Nield [1]. Taunton et al. [2] extend the work of Nield by introducing inertial effects (the acceleration parameter). The

threshold of overstabilities is determined in terms of the thermal Rayleigh number as a function of the governing

parameters for e ¼ 1. Mamou and Vasseur [4] reconsider the problem by examining the effect of the enclosure con-

finement on the onset of overstabilities with n ¼ 0. A general expression for the thresholds is derived for Dirichlet and

Neumann boundary conditions. Following the stability analysis described in Taunton et al. [2], Mamou and Vasseur [4]

and Mamou et al. [14], the characteristic equation for the present problem is obtained as follows:

cneLe
p
c

� �3

þ p2
p
c

� �2

� p1

p
c

� �
� p0 ¼ 0; ð19Þ

where

p0 ¼ R0
T þ R0

S � 1; p1 ¼ eLeðR0
T � 1Þ þ R0

S � 1� nc; p2 ¼ eLeð1þ ncÞ þ nc; ð20Þ

with R0
T ¼ RT=Rsup and R0

S ¼ RS=Rsup. The parameters c and Rsup are defined in Mamou and Vasseur [4].

The threshold of stationary convection (p ¼ 0, i.e. p0 ¼ 0) is given by

Rsup
TC ¼ �RS þ Rsup: ð21Þ

The threshold of overstabilities, which can be obtained by setting p ¼ ipi (i.e. pr ¼ 0), is

Rover
TC ¼ Min

�
� eLe þ nc

e2Le2ðnc þ 1ÞRS þ
ðeLe þ 1ÞðeLe þ ncÞ

e2Le2
Rsup

�
ð22Þ

and the corresponding pulsation of the oscillations is given by:

p2
i ¼ �c2

p1

eLe
or p2

i ¼ �c2
p0
p2

: ð23Þ

Nield [1] and Taunton et al. [2] demonstrate (for e ¼ 1) that the wavelength that minimizes the thresholds of stationary

convection and overstabilities is AC ¼ 2 for any value of the governing parameters when n ¼ 0. However, for n > 0,

Taunton et al. [2] show that the wavelength at the onset of overstabilities (RS < 0) becomes dependent on the governing

parameters. The stability diagram, illustrated in Fig. 1, displays the effect of n on the critical parameters for RS ¼ �100,

Le ¼ 10, e ¼ 1 and aT ¼ aS ¼ 0. The stable, subcritical, overstable and stationary regimes are delineated in the figure.

The wavelength, as shown in Fig. 1(b), decreases slightly, in the close vicinity of n ¼ 0, and then increases significantly

as n rises from 0 to 1.2. Fig. 1(a) shows that the increase of n delays the appearance of overstabilities. The numerical

results show that, for n > 0, the temperature and concentration perturbation profiles are similar but are shifted in the

spatial phase. For Neumann boundary conditions and given set of governing parameters, the onset of overstabilities

Table 2

Critical Rayleigh number, Rover
TC , and oscillation frequency, fr ¼ jpij=2p, for the onset of overstabilities in a square enclosure with

N ¼ �1, Le ¼ 2, e ¼ 0:2, n ¼ 0, and aT ¼ aS ¼ 0

Grid size 2 4 8 10 Nield [1]

Rover
TC 34.55925 34.54403 34.54363 34.54362 3:5p2 ¼ 34:5436

fr 1.75666 1.75621 1.75620 1.75620 1.75620
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occurs at a zero wavenumber that is independent of the parameter n such that the flow remains monocellular for any

aspect ratio of the enclosure.

Some relevant features about the instability of thermal convection in horizontal enclosures is now discussed. Kimura

et al. [15] claim that the preferable convective mode is the single-cell flow when studying thermal convection in hori-

zontal rectangular enclosures (A ¼ 10). Their findings are obtained on the basis of a linear stability analysis that gives a

single-cell flow within a rectangular enclosure subject to a constant heat flux, and on their explicit numerical solver for

the full governing equations. Their code shows that the solution always converges to monocellular flows for RT ¼ 20.

They concluded that the single-cell flow is the unique solution for the problem. Later on, Mamou and Vasseur [4]

consider a similar problem and report that when studying double-diffusive convection, single and multi-cellular flows

are possible far from criticality. Using different flow solvers and both finite-difference and finite element methods, they

find that the single flow is not a unique solution for high Rayleigh number (the results are not presented here). B�eenard
convection (multi-cellular flows) becomes the preferable flow pattern above a certain value of the thermal Rayleigh

number. To confirm these findings, a stability analysis is performed to find which of the possible flow patterns is the

preferable convective mode. In the present context, the preferable solution is defined as the one with the higher growth

rate. Fig. 2 illustrates the growth rate of different convective modes within a square enclosure for Dirichlet boundary

conditions, and within a rectangular enclosure (A ¼ 10) for Neumann boundary conditions. For this situation when

n ¼ 0, the growth rate is given by pr ¼ cðRT � RsupÞ=Rsup by setting the solute buoyancy force to zero (N ¼ 0).

For A ¼ 1 with aT ¼ 0, pr ¼ 0 corresponds to the threshold of the onset of stationary convection. For one-cell flow,

Rsup ¼ 4p2, and for two-cells flow, Rsup ¼ 25p2=4. As observed in Fig. 2(a), the growth rates of these two convective

modes increase with different slopes as RT increases. They intersect at Rint
T ¼ 10p2. Below the intersection point,

RT ¼ Rint
T , the growth rate of the one-cell mode is higher than that of the two-cell mode. For this situation, the one-cell

mode is the preferable one for RT < Rint
T . However, for RT > Rint

T , the growth rate of the two-cells mode is higher; thus
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Fig. 2. Growth rate of different convective modes for pure thermal convection: RS ¼ 0, n ¼ 0 and (a) A ¼ 1 with aT ¼ 0, or (b) A ¼ 10

with aT ¼ 1. The results are obtained with 12� 12 elements for A ¼ 1 and 10� 20 elements for A ¼ 10.
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the two-cell mode is the favorable one. It is expected that when solving the governing equations starting with the pure

diffusive state as initial conditions, the solution will evolve to one-cell flow for RT < Rint
T and to two-cells flow for

RT > Rint
T . An hysteresis may exist when transiting between the two modes.

For Neumann boundary conditions, Fig. 2(b), the intersection point between the growth rates for one-cell and 10-

cells flow is obtained as Rint
T ¼ 23:15 (flows with 2; 3; . . . ; 9 cells are not presented here). The thresholds for stationary

convection are Rsup
TC ¼ 12:017 (one-cell flow) and Rsup

TC ¼ 22:94 (10-cells flow). When RT > Rint
T , the B�eenard convective

flow is favorable and the finite amplitude flow may be stable. Also, for A ¼ 10, flows with one, two; . . . ; 10-cells modes

may be possible, providing that the Rayleigh number is sufficiently high.

For mixed boundary conditions, the thresholds of overstabilities and stationary convection are presented in the

stability diagram in Fig. 3 for positive thermal Rayleigh numbers (heating from below). The threshold for stationary

convection is discussed first. Recall that for pure thermal convection with Dirichlet (aT ¼ 0) and Neumann (aT ¼ 1)

boundary conditions, the supercritical Rayleigh numbers, Rsup
aT

are given by Rsup
0 ¼ 4p2 and Rsup

1 ¼ 22:95, respectively.
According to the linear stability results, the flow structure consists of a square single-cell for relatively small solutal

Rayleigh numbers jRSj. From the stability diagram, the following relationship were found to fit the threshold of sta-

tionary convection curves:

Rsup

TC;ðaT ;aSÞ ¼ �bRS þ Rsup
aT

; with b ¼
Rsup

aT

Rsup
aS

ð24Þ

such that, for ðaT; aSÞ ¼ ð1; 0Þ, b ¼ �ð4p2=22:95Þ ’ �1:72 and for ðaT; aSÞ ¼ ð0; 1Þ, b ¼ �ð22:95=4p2Þ ’ �0:58.
The above relation is valid as long as the incipient flow remains monocellular and the streamlines circular. As shown

in Fig. 3(a), for ðaT; aSÞ ¼ ð1; 0Þ, the flow patterns are strongly affected by the increase in jRSj. For relatively high solutal

Rayleigh numbers jRSj, the circular original cell observed for RS P 0 is distorted significantly and broken into two co-

rotating cells contained within the original cell. One-cell is near the lower boundary and the other near the upper

boundary. For large jRSj, a weak recirculation flow is observed between the two-cells. The curves of the threshold for

stationary convection are slightly curved due to the change in the flow structure. Similar results have been obtained by

Mahidjiba et al. [10].
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Fig. 3. Stability diagram for mixed boundary conditions within a square enclosure for e ¼ 1 and n ¼ 0 with (a) ðaT; aSÞ ¼ ð1; 0Þ and (b)

ðaT; aSÞ ¼ ð0; 1Þ. Streamlines for finite amplitude convection for RS ¼ �500 and Le ¼ 0:5 and (c) RT ¼ 300 and ðaT; aSÞ ¼ ð1; 0Þ,
Rsup
TC ¼ 262:18; Wmax ¼ 0:643, W0 ¼ 0:278, Num ¼ 1:098 and Shm ¼ 1:011, or (d) RT ¼ 650 and ðaT; aSÞ ¼ ð0; 1Þ, Rsup

TC ¼ 595:20;

Wmax ¼ �1:227, Wmax ¼ 1:227, Num ¼ 1:190, Shm ¼ 1:056. The results are obtained with 40� 40 elements.
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At the onset of stationary convection, for ðaT; aSÞ ¼ ð0; 1Þ, the flow pattern is monocellular for RS > �41:9 (see Fig.

3(b)). For RS < �41:9, the flow structure that gives the minimum critical Rayleigh number is characterized by the

existence of six convective cells: two main vertical contour-rotating cells (see Fig. 3(b)) occupy the central region of the

enclosure and four small cells are located near the top and lower boundaries (i.e. two on the top and two on the bottom).

For such boundary conditions, Mahidjiba et al. [10] found that the wavelength decreases to 0.93 within an infinite layer.

For the onset of overstabilities, the flow pattern is always monocellular, and as shown in Fig. 3, the threshold of

overstabilities obtained for Le ¼ 10 is well below the threshold for stationary convection. Finite amplitude flow patterns

near the threshold for stationary convection are depicted in Fig. 3(c) and (d) for ðaT; aSÞ ¼ ð1; 0Þ and ðaT; aSÞ ¼ ð0; 1Þ,
respectively. The flow patterns are similar to the incipient flow patterns predicted by the linear stability analysis. For

ðaT; aSÞ ¼ ð0; 1Þ, the flow is found to oscillate slightly without noticeable changes in the flow patterns.

4.2. Convective state

The convective solution is obtained analytically for a horizontal infinite layer subject to constant fluxes of heat and

solute (aT ¼ aS ¼ 1). The steady convective solution is expected to become unstable far from the criticality.

4.2.1. Basic convective solution

For a shallow enclosure subject to constant fluxes of heat and solute (aT ¼ aS ¼ 1), the flow within the enclosure is

parallel and the solution is given in Mamou and Vasseur [4].

Typical numerical results obtained by solving the full governing equations (1)–(3) are compared to the analytical

solution in Fig. 4. The results are obtained with a grid of 20� 120 elements, and RT ¼ 100, RS ¼ �100, Le ¼ 10, A ¼ 10

and aT ¼ aS ¼ 1. Fig. 4(a) demonstrates clearly the parallelism of the streamlines with respect to the horizontal walls

except in the end regions, and the horizontal linear variations of the temperature and concentration. Fig. 4(b)–(e)

illustrate a comparison between the numerical and analytical solutions in terms of the mid-height horizontal and mid-

width vertical profiles of W, T and S. There is a good agreement between the two approaches in the central part of the

enclosure (�46 x6 4).

The analytical solution obtained by Mamou and Vasseur [4] shows that the threshold for stationary convection is

given by

Rsup
TC ¼ �RS þ 12: ð25Þ

For subcritical flows, the threshold is given by

Rsub
TC ¼ 12

Le2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Le2 � 1

p�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�RS=12

p �2

: ð26Þ

For Dirichlet boundary conditions and an infinite layer, Rudraiah et al. [5] determine the threshold of subcritical flows

using a weak non-linear stability analysis. The threshold expression is similar to that given in Eq. (26), but with

Rsup ¼ 4p2 instead of 12. Mamou and Vasseur [4] extend the study of Rudraiah et al. [5] by deriving the same expression

for general boundary conditions and arbitrary aspect ratio enclosures.

4.3. Onset of transition

The threshold of transition, Rtran
TC , characterizes the passage from finite amplitude steady convective flows to oscil-

latory flows. The transition phenomenon occurs usually at high Rayleigh number. The procedure to determine the

threshold of transition is the same as that used to compute the threshold of overstabilities for an infinite layer in the

previous sections. For this situation, the basic solution Wb, Tb and Sb is given in Mamou and Vasseur [4]. To validate

the present numerical procedure, the thermal convection results of Kimura et al. [15] are considered by omitting the

solutal buoyancy force (RS ¼ 0) in the present governing equation (13). The critical Rayleigh number for transition is

presented in Table 3; the corresponding critical wavenumber kC and frequency fr are also displayed in. The results agree

well with those obtained by Kimura et al. [15].

The effect of the Lewis number and the normalized porosity on the critical parameters at transition is shown in Fig.

5(a)–(c). The results are presented for RS ¼ �100, n ¼ 0 and aT ¼ aS ¼ 1. The parameters e and Le have a significant

effect on the critical parameters. The critical parameters become independent of Le, when Le becomes large enough.

This is because of the solute concentration becomes uniform within a large part of the enclosure and the mass transfer is

caused mainly by convection. For this situation, the critical values tend towards those corresponding to pure thermal

convection. The perturbations profiles at the threshold of transition are depicted in Fig. 5(d)–(e). They consist of small

vortices aligned near the horizontal boundaries. Traveling waves can be initiated above the threshold of transition.
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Fig. 4. Comparison between the numerical results and the analytical parallel flow solution for RT ¼ 100, RS ¼ �100, Le ¼ 10, A ¼ 10

and aT ¼ aS ¼ 1: (a) streamlines, isotherms and isoconcentrations, (b) vertical stream function profiles at the mid-width and (c) mid-

height of the enclosure, and (d) the vertical temperature and concentration profiles at the mid-width and (e) mid-height of the en-

closure. Numerical solution: W0 ¼ 3:685, Wmax ¼ 3:733, Nu ¼ 3:734, Num ¼ 3:597, Sh ¼ 6:029 and Shm ¼ 6:726. Analytical solution:

W0 ¼ 3:684, Nu ¼ Num ¼ 3:734 and Sh ¼ Shm ¼ 5:959. The numerical solution is represented by symbols (some symbols are skipped for

clarity) and the analytical solution is represented by solid lines. The results are obtained with 20� 120 elements.

Table 3

Critical Rayleigh number, Rtran
TC , critical wavelength, AC, and oscillation frequency, fr, at the onset of transition in an infinite layer

Number of elements 4 8 12 16 Kimura et al. [15]

Rtran
TC 510.0195 506.1841 506.0815 506.0742 506.07

kC ¼ 2p=AC 4.7696 4.8239 4.8257 4.8251 4.825

fr ¼ jpij=2p 22.0287 22.1070 22.1122 22.1095 22.11
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To examine the oscillatory behavior of the convective flows above the threshold of transition, typical results are

presented in Fig. 6 for RS ¼ �100, Le ¼ 10, e ¼ 1, n ¼ 0 and ðaT; aSÞ ¼ ð1; 1Þ. The linear stability analysis gives the

threshold value of Rtran
TC ¼ 532; the critical wavelength is AC ¼ 1:3. To approximate the flow within an infinite layer, an

aspect ratio of A ¼ 10 is considered. The amplitude of the oscillations are very small near criticality and changes to the

flow pattern are indistinguishable. For this reason, a thermal Rayleigh number of RT ¼ 600 is chosen for the numerical

run. For this situation, the flow is periodically oscillating but the flow patterns remain unicellular. However, the

parallelism of the streamlines is broken, especially at the mid-height of the enclosure. The unsteadiness of the flow is

characterized by the existence of a two superposed layers, each layer consists of a series of secondary circulations

traveling in the horizontal direction. The oscillatory behavior of the flow is characterized by periodic locally enhanced

heat and mass transfer rates as shown in Fig. 7(c). The extremums of Nul and Shl follow the vortices as they travel in the

horizontal direction. The perturbation flow patterns are displayed in Fig. 7(d) in terms of the perturbed stream function

profile wp defined as

wp ¼ W � 1

s

Z s

0

Wdt: ð27Þ

The vortices in both the two layers are seen to travel along the enclosure walls in the clockwise direction. As shown in

Fig. 7(c) and (d), the vortices strengthen as they approach the vertical walls and the heat and mass transfer rates be-

comes enhanced near the end regions of the enclosure. The shape and wavelength of the formed vortices are ap-

proximately the same as those predicted by the stability analysis when superposing the two conjugate solutions.

The effect of the acceleration parameter, n, on the threshold of transition is also studied for the same problem.

Typical results are depicted in Table 4 for RS ¼ �100, Le ¼ 10, e ¼ 1 and ðaT; aSÞ ¼ ð1; 1Þ. When n increases, the

threshold for transition is delayed and the perturbation wavelength becomes large. The oscillation frequency (i.e.

pulsation) also decreases. As a result, the steady-state flows can be stabilized by increasing n.
The bifurcation diagram is given in Fig. 7 for RT ¼ 100, RS ¼ �100, Le ¼ 10, A ¼ 10 and aT ¼ aS ¼ 1. The results

are presented in terms of the local heat and mass transfer rates (Nu and Sh) as a function of the thermal Rayleigh

number. Five modes are shown on the graph. The first one, Region I, corresponds to the stable diffusive regime in which

all perturbations decay. Region II corresponds to subcritical flows where the diffusive state is unstable to finite am-

plitude perturbations. Region III is the overstable regime in which perturbations grow in an oscillatory manner. The
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Fig. 5. Effects of Le and e on the critical parameters at the onset of transition for RS ¼ �100, aT ¼ aS ¼ 1 and n ¼ 0: (a) Rtran
TC versus e,
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overstable regime extent to Rosc
TC above the oscillation frequency vanishes. Region IV represents the stationary con-

vection regime, and region V corresponds to the oscillatory finite amplitude convection that occurs right above the

threshold of transition.

In metallurgy, many crystal growth systems, such as the solidification of metallic alloys or binary mixtures, the

region (interface) separating the solid and the liquid regions consists of a mixture of liquid and crystals (solid matrix).

The region is known as a mushy layer, in which the flow can be described by Hazen–Darcy law, Chung and Worster

[16]. When the mushy layer is horizontal, the temperature gradient and the solute gradient due to mass rejection at the

interface can trigger convective instabilities with/without formation of chimneys due to difference in thermal and solute

diffusion. In such systems, the prediction of steady or oscillatory convective flows is very important since they can lead
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to non-uniform crystal growth and undesirable non-homogeneous crystals. The behavior of the diffusion and the

convective flows described in the present study are comparable to the practical situation described in [16].

5. Conclusions

In the present work, a thorough investigation is conducted on the stability of the rest and convective states within a

shallow porous layer subject to vertical thermal and solutal gradients. The governing equations are solved numerically

using the finite element method. Based on linear stability theory, the resulting linear perturbed equations are solved

numerically also using the finite element method. Considering different thermal and solutal boundary conditions, the

threshold for the onset of overstability and the threshold of transition are determined as functions of the governing

parameters. The latter characterizes the transition from steady to oscillatory convective flows. Both thresholds depend

considerably on the acceleration coefficient and the normalized porosity of the porous material. An increase in the two

parameters delays the appearance of overstabilities and finite amplitude oscillatory convection. The wavenumber at

criticality depends on this two parameters.

At the onset of overstabilities, the wavenumber kC ¼ p is constant and independent of the governing parameters

when the acceleration parameter is zero. However, the wavenumber becomes a function of the governing parameter

when the acceleration is finite. At the onset of stationary convection, the wavelength is constant kC ¼ p for Dirichlet

thermal and solutal boundary conditions and zero for Neumann boundary conditions. For mixed boundary conditions,

the wavenumber remains a function of the governing parameters. For a square enclosure and relatively small solutal

Rayleigh numbers, the threshold for stationary convection is given by Rsup
TC ¼ �1:72RS þ 22:95 when the enclosure was

subject to Neumann thermal and Dirichlet solutal boundary conditions, and by Rsup
TC ¼ �0:58RS þ 4p2 for Dirichlet

thermal and Neumann solutal boundary conditions.

Table 4

Effect of the acceleration parameter n on the threshold of transition in an infinite layer: Le ¼ 10, RS ¼ �100, e ¼ 1 and ðaT; aTÞ ¼ ð1; 1Þ
n Rtran

TC AC pi

0 532.12 1.30 	142.46

10�3 521.19 1.38 	128.10

2� 10�3 526.25 1.49 	115.37

5� 10�3 583.69 1.91 	91.48

10�2 748.39 2.60 	74.19

2� 10�2 1360.71 4.02 	62.68
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Fig. 7. Bifurcation diagram (Nu and Sh versus RT) for RT ¼ 100, RS ¼ �100, Le ¼ 10, A ¼ 10 and aT ¼ aS ¼ 1. The critical parameters

are obtained for n ¼ 0 and e ¼ 1 as: Rsub
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